skip to main content


Search for: All records

Creators/Authors contains: "Gour, Riti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 28, 2024
  2. In this work, we consider the network slice composition problem for Service Function Chains (SFCs), which addresses the issue of allocating bandwidth and VNF resources in a way that guarantees the availability of the SFC while minimizing cost. For the purpose of satisfying the availability requirement of the SFC, we adapt a traffic-weighted availability model which ensures that the long-term fraction of traffic supported by the slice topology remains above a desired threshold. We propose a method for composing a single or multi-path slice topology and for properly dimensioning VNF replicas and bandwidth on the slice paths. Through simulations, we show that our proposed algorithm can reduce the total cost of establishment compared to a dedicated protection approach in 5G networks. 
    more » « less
  3. The emergence of diverse network applications demands more flexible and responsive resource allocation for networks. Network slicing is a key enabling technology that provides each network service with a tailored set of network resources to satisfy specific service requirements. The focus of this paper is the network slicing of access networks realized by Passive Optical Networks (PONs). This paper proposes a learning-based Dynamic Bandwidth Allocation (DBA) algorithm for PON access networks, considering slice-awareness, demand-responsiveness, and allocation fairness. Our online convex optimization-based algorithm learns the implicit traffic trend over time and determines the most robust window allocation that reduces the average latency. Our simulation results indicate that the proposed algorithm reduces the average latency by prioritizing delay-sensitive and heavily-loaded ONUs while guaranteeing a minimal window allocation to all ONUs. 
    more » « less
  4. This paper addresses the problem of admission control for elastic network slices that may dynamically adjust provisioned bandwidth levels over time. When admitting new slice requests, sufficient spare capacity must be reserved to allow existing elastic slices to dynamically increase their bandwidth allocation when needed. We demonstrate a lightweight deep Reinforcement Learning (RL) model to intelligently make ad-mission control decisions for elastic slice requests and inelastic slice requests. This model achieves higher revenue and higher acceptance rates compared to traditional heuristic methods. Due to the lightness of this model, it can be deployed without GPUs. We can also use a relatively small amount of data to train the model and to achieve stable performance. Also, we introduce a Recurrent Neural Network to encode the variable-size environment and train the encoder with the RL model together. 
    more » « less
  5. Availability is a key service metric when deploying service function chains (SFCs) over network slices in 5G networks. We study the problem of determining the composition of a slice for a service function chain and the mapping of the slice to the physical transport network in a way that guarantees availability of the SFC while minimizing cost. To improve the availability, we design a slice that provides multiple paths (possibly with non-disjoint routing over the physical infrastructure) for hosting SFCs, and we determine the appropriate dimensioning of bandwidth on each path. Our simulation results show the effectiveness of our approach in terms of the cost of establishing the SFC and the SFC acceptance ratio.

     
    more » « less